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Highlights 

 Rate of carbapenem resistance in Acinetobacter baumannii is extremely high in Vietnam 

 Acinetobacter baumannii nosocomial infections are not limited to intensive care unit  

 Genomic survey detects intra- and inter-hospital spread of Acinetobacter baumannii  
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Abstract  

Objectives 

To characterise the clinical features of A. baumannii infections and investigate the phylogenetic structure 

and transmission dynamics of A. baumannii in Vietnam. 

Methods 

Between 2019 and 2020, a surveillance of A. baumannii (AB) infections was conducted at a tertiary 

hospital in Ho Chi Minh City, Vietnam. Risk factors for in-hospital mortality were analyzed using logistic 

regressions. Whole-genome sequence data were used to characterise genomic species, sequence types 

(STs), antimicrobial resistance genes, surface antigens and phylogenetic relatedness of AB isolates.  

Results 

Eighty-four patients with AB infections were enrolled in the study, 96% of whom were hospital-acquired. 

Half of the AB isolates were identified from ICU-admitted patients while the remaining isolates were 

from non-ICU patients. The overall in-hospital mortality was 56%, with associated risk factors including 

advanced age, ICU stay, exposure to mechanical ventilation/central venous catheterization, pneumonia as 

source of AB infection, prior use of linezolid/aminoglycosides, and AB treatment with colistin-based 

therapy. Nearly 91% of isolates were carbapenem-resistant; 92% were multidrug-resistant and 6% were 

colistin-resistant. ST2, ST571 and ST16 were the three dominant CRAB genotypes, exhibiting distinct 

AMR gene profiles. Phylogenetic analysis of CRAB ST2 isolates together with previously published ST2 

collection provided evidence of intra- and inter-hospital transmission of this clone.  

Conclusions 

Our study highlights a high prevalence of carbapenem resistance and multidrug resistance in A. 

baumannii and elucidates the spread of CRAB within and between hospitals. Strengthening infection 

control measures and routine genomic surveillance are crucial to reducing the spread of CRAB and timely 

detecting novel pan drug-resistant variants.   
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1. Introduction 

Acinetobacter baumannii-calcoaceticus complex is a group of aerobic, non-fermentative, Gram-negative 

coccobacilli, comprising of four different species A. baumannii, A. pittii, A. nosocomialis and A. 

calcoaceticus. Since the 1960s-1970s, Acinetobacter have emerged as one of the leading causes of 

nosocomial infections, causing bloodstream infections (BSIs), hospital-acquired pneumonia (HAP) and 

ventilator-associated pneumonia (VAP), especially in ICUs worldwide [1,2]. Major predisposing factors 

include prolonged hospital stay, invasive procedures, advanced age, immunosuppression and exposure to 

broad-spectrum antimicrobials, particularly in ICU patients [3–6]. Acinetobacter are intrinsically resistant 

to desiccants, disinfectants and key antimicrobials, which contributes significantly to their long-term 

persistence and transmission in healthcare environments. 

 

Within the Acinetobacter baumannii-calcoaceticus complex, Acinetobacter baumannii has been identified 

as a priority pathogen by the WHO for research and development of new antimicrobials, underlining its 

significant threat to global public health [6]. Carbapenem-resistant A. baumannii (CRAB) are especially 

challenging for clinical management, given the lack of effective treatment drugs [7]. Furthermore, 

multiple lineages of CRAB have emerged independently followed by international spread, often with an 

XDR phenotype (defined as resistance to all antimicrobials other than polymyxins and tigecycline). 

Previous studies have shown that antimicrobial resistance (AMR) is the most important determinant of 

clinical outcome in A. baumannii infections and ineffective early therapy is associated with increased 

mortality [6]. XDR A. baumannii infections may be treated with tigecycline or colistin; however, these 

drugs are less effective, with high toxicity and increasing resistance reported [8].  

 

Carbapenem resistance in A. baumannii is mediated by the interaction of multiple mechanisms; 

specifically, the overexpression of plasmid- and/or chromosomal-mediated blaOXA genes encoding 

oxacillinases (blaOXA-23, blaOXA-24/40, blaOXA-51, blaOXA-58, and blaOXA-143); the presence of metallo-

carbapenemases (blaIMP, blaVIM, blaSIM, and blaNDM) and downregulation of porins constituting channels 
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for the influx of carbapenems [9]. There are two major globally disseminated clones of A. baumannii, 

known as GC1 and GC2, which emerged and became resistant to older drugs in the 1970s followed by 

further resistance to newer drugs (fluoroquinolones, cephalosporins and carbapenems) in the 1980s 

[10,11]. Currently, GC2 has successfully disseminated throughout Asia [12], Europe [13], Australia [14], 

and the US [15], and appears to have become predominant in Asia [16,17]. The blaOXA-23–carrying CRAB 

that have been reported worldwide primarily belong to GC2.  

 

A recent systematic review has underlined high incidence and increased mortality in hospital-acquired 

infections (HAIs) caused by CRAB in Southeast Asia [18]. In Vietnam, A. baumannii represents a leading 

cause of HAIs, resulting in significant health burden. Data from studies across Vietnam have 

demonstrated a dramatic increase of CRAB since 2009, predominantly associated with VAP and BSIs 

[19–25]. The proportion of CRAB was reported to range from 55% to 90% [24–26] with mortality rates 

up to 52% reported in VAP patients of a tertiary hospital [20]. XDR was also common; for instance, 90% 

of A. baumannii isolates from five medical centers in Vietnam were found to have gained multiple 

resistance to β-lactams, cephalosporins, aminoglycosides and carbapenems [23]. Carbapenem resistance 

in A. baumannii is largely mediated via blaOXA-23 [19–22,24,25] whilst blaNDM-1 has sporadically been 

found [19,21]. The lack of vaccine against A. baumannii and the increasing resistance to carbapenems and 

last-line drugs underline the needs of closely monitoring the epidemiology and clinical impact of CRAB 

in Vietnam. Here, we conducted a prospective surveillance of A. baumannii infections at a tertiary 

hospital in Vietnam to characterize the clinical features of patients infected with CRAB and dissect the 

molecular characteristics and pathogen population dynamics.  

 

2. Material and methods 

2.1. Study setting 

The University Medical Center (UMC) is a large tertiary and teaching hospital in Ho Chi Minh City 

(HCMC), Vietnam. The hospital has about 1,000 beds and provides healthcare services for more than 
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5,000 outpatients per day, plus 55,000 inpatients and 30,000 surgeries per year. The UMC has 34 clinical 

wards and 10 sub-clinical wards, including an ICU with 30 beds. The majority of patients are from 

HCMC and its surrounding provinces.  

 

2.2.  Study design  

Patients admitted to all clinical wards (ICU and non-ICU wards) at the UMC between October 2019 and 

October 2020, who had clinical diagnosis of bacterial infections and microbiological culture positive with 

A. baumannii from one of the following clinical specimens: blood, sputum/BAL, pus/wound swab, urine, 

were eligible for the study. Patient’s guardians/caregivers were asked to provide written informed consent 

prior to enrollment. Upon patient enrollment, the following data were retrospectively collected from 

electronic health record: date of admission, age, gender, place of admission (home/hospital transfer), 

underlying conditions, patient location, prior antibiotic use, immunosuppressive therapy, invasive 

procedures. Patients were followed until discharge or in-hospital death and information regarding ICU 

stay, duration of hospital stay, discharge date and outcome was recorded. In-hospital mortality was 

defined as deaths in hospital or patients discharged palliatively. The data were collected from all study 

participants using a case report form and subsequently de-identified and transferred to an electronic 

database.   

 

For microbiological data, we collected information regarding sample type (blood, sputum/BAL, 

pus/wound swab, urine), dates of sample collection and positive culture, place of sample collection, 

clinical diagnosis, and antimicrobial susceptibility (AST) results. Hospital-acquired infection (HAI) was 

defined as positive culture with A. baumannii from a patient with clinically suspected infection at least 48 

hours after hospital admission; community-acquired infection (CAI) was defined as positive culture with 

A. baumannii from a patient with clinically suspected infection within 48 hours of hospital admission, and 

without a history of hospital transfer. Metadata associated with the study are included in Supplementary 

Table 1.  
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2.3. Ethical approval 

The study received approval from the Ethics Committee of UMC in HCMC (approval number: 

283/HĐĐĐ-ĐHYD & 5676/QĐ-ĐHYD).  

 

2.4. Microbiological culture 

For blood culture, two to four bottles with 8-10 mL of blood per bottle were routinely obtained and 

inoculated into aerobic and anaerobic blood culture bottles, which were subsequently incubated at 35±2oC 

in BACT/ALERT VIRTUO (Bio-Mérieux, France) or BD BACTEC FX (Becton Dickenson, USA) 

automated analyser for up to five days. Sub-culture was performed on fresh sheep blood, MacConkey, 

and chocolate agars when the machine indicated a positive signal. Organisms were identified using BD 

Phoenix M50 (Becton Dickenson, USA) or Vitek 2 Compact (Bio-Mérieux, France) automated 

identification and AST testing systems. For sputum culture, sample quality was assessed using Bartlett’s 

grading system [27], followed by plating onto selective media for bacterial isolation. For bronchoalveolar 

lavage aspirate (BAL) and urine culture, samples were quantitatively plated onto selective media and 

bacterial identification and AST were performed for known pathogens from BAL with colony count ≥104 

cfu/mL and uropathogens with colony count ≥105 cfu/mL. When multiple A. baumannii organisms were 

isolated from the same patient, only the first isolate was included for analyses.  

 

2.5. Antimicrobial susceptibility testing 

AST was performed by BD PhoenixTM M50 or Vitek 2 Compact automated system for routinely tested 

antibiotics. Broth microdilution method was used to measure the MICs against colistin following CLSI 

guidelines [28]. AST results were interpreted according to the CLSI 2019 guidelines [28]. CLSI 

breakpoints for colistin MIC ≥ 4 mg/L and ≤ 2 mg/L were considered as resistant and susceptible, 

respectively. MDR was defined as resistance to at least one agent in three or more antimicrobial 

categories [29]. 
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2.6. Whole genome sequencing 

Genomic DNA from A. baumannii was extracted using the Wizard Genomic DNA Extraction Kit 

(Promega, USA) and 1 ng of genomic DNA from each sample was subjected to library preparation using 

a Nextera XT kit. WGS was performed using Illumina MiSeq (Illumina, USA) to generate 250 bp paired-

end reads. Raw sequence data are available in the European Nucleotide Archive (Project number: 

PRJEB51471). 

 

2.7. Gene content analysis and species identification 

SRST2 v0.2.0 [30] was used to identify acquired resistance genes, virulence genes, plasmid replicon types 

and MLST using the following databases: ARG-ANNOT [31], Virulence Factor Database (VFDB: 

http://www.mgc.ac.cn/VFs/), customized plasmid replicon database for Acinetobacter [17], A. baumannii 

MLST Pasteur scheme [32], respectively. Kaptive [33] was used to identify capsule polysaccharide (KL) 

and lipooligosaccharide outer core (OCL) types. All Illumina reads were de novo assembled using 

Unicycler v0.4.8 [34] to generate contigs using the default settings. MASH [35] was used to generate 

Mash distances, a good approximation to ANI values, which were subsequently used to compute pairwise 

ANI-based distances between our Acinetobacter isolates and a published reference collection of 

Acinetobacter species [36]. The pairwise ANI with a 96% cutoff was used to confirm species. 

 

2.8. SNP detection and phylogenetic analysis  

Illumina trimmed reads were mapped against the reference genome, Acinetobacter baumannii ST2 

WM99c (accession number: CP031743), using RedDog pipeline v1.10b with default parameters [37]. 

Briefly, RedDog used Bowtie2 v2.2.3 [38] to map all raw reads to the reference sequence and high-

quality SNPs with Phred quality score ≥ 30 are extracted using SAMtools v1.3.1 [37]. SNPs were filtered 

to remove those with fewer than five supporting reads or with >2.5 times the mean read depth 
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(representing putative repeated sequences), or with ambiguous base calls. A pseudo-genome alignment 

was inferred using the above reference sequence with the snpTable2GenomeAlignment.py script from 

RedDog. Genomic sequences were removed from further analyses if there was evidence suggestive of 

contamination, i.e. <50% of mapped reads or the total assembly length being > 4.5 Mb. The pseudo-

whole-genome alignment was subjected to Gubbins v1.4.5 [39] for recombination removal and SNP-sites 

[40] was used to extract SNPs from the recombination-free multi-FASTA alignment, resulting in an 

alignment of 153 non-recombinant SNPs between ST2 isolates. IQ-tree v1.3.1 [41] was used to run model 

testing and infer a maximum likelihood (ML) phylogenetic tree using the best fit nucleotide substitution 

model, K2P+ASC. The ML tree was rooted using the WM99 strain as outgroup. Support for the ML tree 

was assessed via 1000 pseudo-replicates. SNPPar [42] was used to identify SNPs occurring on ST2 

phylogenetic branches. To provide further contextualization of ST2 circulation, we combined our 

genomic data with previously published ST2 genomes from other hospitals in Vietnam (n=64) 

(Supplementary Table 2) and reconstructed a secondary phylogenetic tree using the same method as 

above.  

SNP detection was performed for ST571 and ST16 isolates using the same approach for ST2 isolates, 

yielding an alignment of non-recombinant SNPs of 209 sites for ST571 and 103 sites for ST16 isolates. 

The ML tree for ST571 isolates was also reconstructed using IQ-tree v1.3.1 and rooted with the WM99c 

strain as an outgroup. 

 

2.9. Statistical analyses 

Statistical analyses were conducted using R (v4.1.2). Pearson’s Chi-square or Fisher’s exact test was used 

for categorical variables, and Mann-Whitney test for continuous data. Univariate analyses were first 

performed to identify significant variables. To avoid overfitting, only variables that were significant in 

univariate analysis (p<0.05) were included in the multivariate logistic regression model. The most 

significant variables were then selected using a stepwise approach until the best fitted model was 
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obtained. The preferred multivariate model was the one with the minimum Akaike information criterion 

value.  

 

3. Results 

3.1. Demographic and clinical characteristics of A. baumannii (AB) infections 

A total of 84 patients were enrolled in the study. Baseline demographics and clinical characteristics of AB 

cases are shown in Table 1. The median age of the patients was 73.5 years (IQR: 64-86 years). Nearly 

55% of the study population was male. The majority of patients (81%) had at least one underlying 

condition. Half of the patients (50%) acquired A. baumannii infections while staying in ICU, with a 

median duration from ICU admission to the development of the infection of 9.5 days (IQR: 4-17.5 days). 

Among non-ICU patients, the median time between hospital admission and AB infection was 8 days 

(IQR: 2-16.5 days). Previous antibiotic use was common, with 88.1% of patients having received at least 

one antibiotic; the most frequently used drugs were carbapenems (70.2%), glycopeptides (44.1%), 

fluoroquinolones (41.7%), third-generation cephalosporins (29.8%) and linezolid (27.4%). Previous 

exposure to immunosuppressive therapy was found in 61.9% of patients. The usage of invasive procedure 

was 60.7% for mechanical ventilation, 29.8% for central venous catheterization and 32.1% for urinary 

catheterization. The most common site of AB isolation was lower respiratory tract (64.3%), followed by 

pus/wound swabs (20.2%), urine (10.7%) and blood (4.8%). Carbapenems (76.2%), glycopeptides 

(44.0%), colistin (41.7%), third-generation cephalosporins (38.1%), fluoroquinolones (32.1%) and 

linezolid (32.1%) were the most common drugs used following the identification of AB infections.  

 

Three cases were identified as community-acquired infections, while the remaining 81 cases were 

hospital-acquired infections. The mean length of hospital stay was 33.6 ± 28.6 days. The overall in-

hospital mortality rate was 56% (47/84); however, the mortality rate increased to 80.9% (34/42) among 

ICU-acquired cases. Compared with the survivor group, patients in the non-survivor group were strongly 

associated with advanced age (p=0.018), ICU admission (p<0.001), lower respiratory tract as the origin of 
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AB (p=0.002), exposures to immunosuppressive drugs (p=0.008), mechanical ventilation (p<0.001), 

central venous catheterization (p=0.017), previous uses of aminoglycosides (p=0.037), linezolid 

(p=0.014) and AB treatment with colistin (p=0.004) (Table 1). 

 

3.2. Risk factors for in-hospital mortality in patients with A. baumannii infections 

We performed univariate and multivariate logistic regression analyses to identify risk factors associated 

with in-hospital mortality (Table 2). Univariate analyses showed that advanced age (p=0.025), ICU 

admission (p<0.001), lower respiratory tract as the source of AB (p=0.002), immunosuppressive therapy 

(p=0.009), mechanical ventilation (p<0.001), central venous catheterization (p=0.019), previous uses of 

linezolid (p=0.015), aminoglycosides (p=0.047) and colistin-based treatment (p=0.005) were significantly 

associated with in-hospital mortality. Multivariate analysis revealed that ICU admission (p=0.001) was 

the only independent predictor of in-hospital deaths in patients with A. baumannii infections.  

 

3.3. Antimicrobial susceptibility of A. baumannii isolates 

Fifty percent of the isolates (42/84) were identified from patients residing in ICU, while the remaining 

isolates were from ten different clinical wards. About 90.5% of isolates were resistant to carbapenems. 

The resistance rates to fluoroquinolone, third-generation cephalosporins, aminoglycosides, beta-

lactams/beta-lactam inhibitor and trimethoprim/sulfamethoxazole were 90.5%, 92.9%, 86.9%, 88.1%, 

82.7%, respectively. Overall, 92% of isolates were multidrug-resistant. Five isolates (6%) were resistant 

to colistin, four of which were also resistant to carbapenems. The colistin MIC50 and MIC90 values were 

0.5 mg/L and 1 mg/L, respectively. Infections with CRAB isolates were not associated with non-survivor 

group (p=0.13).  

 

3.4. Genomic analysis of A. baumannii isolates 

WGS data from 82 microbiologically-defined A. baumannii isolates were available for analyses. Our data 

showed that 76 isolates were confirmed as A. baumannii; other species included A. pittii (4), A. 
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nosocomialis (1) and A. seifertii (1). Fifteen STs were identified, of which the dominant STs were ST2 

(58.5%), ST571 (15.9%) and ST16 (4.9%); each of the 12 remaining STs were represented by one to 

three isolates. ST2 isolates were hospital-wide distributed, encompassing ICU (62.5%) and other eight 

clinical wards. About 50% of the ST571 isolates were detected in ICU, while all ST16 isolates were from 

non-ICU wards. For the three A. baumannii isolates from CAIs, all of them were resistant to carbapenem 

and belonged to ST2, ST132 and ST571.  

 

All A. baumannii isolates harboured the chromosomal blaOXA-51-like gene, 88.2% (67/76) of which also 

carried the carbapenem resistance gene blaOXA-23. BlaNDM-1 was found in eight isolates, including five A. 

baumannii (ST16: four isolates; ST32: one isolate) and three A. pittii isolates (ST207: two isolates; 

ST220: one isolate). Three blaNDM-1-carrying isolates also possessed blaOXA-58. Notably, the three 

predominant STs carried multiple but distinct AMR gene profiles, for example: blaOXA-23-mphE-msrE-

aph3'Ia(+/-)-armA-strA-strB-sulIII(+/-)-blaTEM-tetB for ST2; blaOXA-23-mphE-msrE-aadA-armA-sulI-

blaTEM for ST571 and aac3-IId(+/-)-aphA6-mphE(+/-)-msrE(+/-)-blaNDM-1-blaOXA-58(+/-)-tet39(+/-) for 

ST16. The distribution of key virulence factors was similar between the three STs; the exceptions were 

the absence of abaI-abaR (quorum sensing) in ST571 isolates, and the lack of bap (biofilm-associated 

protein), hemO (heme utilization) and galU-pgi (polysaccharide synthesis) in ST16 isolates. No plasmid 

replicon was found in any isolates.  

 

The five colistin-resistant isolates belonged to A. baumannii-ST2 (1), A. baumannii-ST571 (2), A. pittii-

ST207 (1) and A. seifertii-STNF (1). Colistin resistance was mediated by an insertion of ISAba1 upstream 

of the eptA gene (position +51) encoding phospho-ethanolamine transferase in A. baumannii-ST2; 

nonsynonymous mutation P170L in the pmrB gene in A. baumannii-ST571, inactivation of lipid A 

biosynthesis genes lpsB,lpxC,lpxD,lpxL,lpxM and/or lpxA and/or lpxB in A. pittii-ST207 and A. seifertii-

STNF.  
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3.5. Phylogenetic analysis of A. baumannii ST2 and ST571 isolates 

We reconstructed the phylogeny of A. baumannii ST2 isolates and mapped it against patients’ treatment 

wards to investigate the circulation of these organisms. The ST2 isolates were separated into four 

different phylogenetic clusters, largely corresponding to four KL types: KL2, KL3, KL6 and KL52. The 

KL6 cluster was solely found in non-ICU wards, whereas the other three clusters were found in both ICU 

and non-ICU wards. Furthermore, the ICU and non-ICU isolates clustered together in monophyletic 

clusters with a maximum genetic distance of ≤ 5 SNPs providing strong evidence for between-ward 

transmissions, given that the substitution rate of A. baumannii GC2 was estimated to be ~10 SNPs/year 

[19] and a cut-off  ≤ 10 SNPs was used to identify A. baumannii transmission in an ICU [43]. Our data 

revealed the co-circulation of multiple ST2 clusters with distinct KL types in ICU, as well as intermittent 

spread of ST2 organisms between ICU and non-ICU wards (Figure 1, Supplementary Figure 1). Notably, 

we identified a capsular switch between KL3 and KL2, mediated by a recombination event in the K locus. 

According to our rooted phylogenetic tree, the KL3 cluster was more basal to the most recent common 

ancestor of KL3 and KL2 isolates; additionally, the mean pairwise SNP distance between KL2 isolates 

was significantly lower than that of KL3 isolates (1.9 SNPs versus 7.8 SNPs) (p <0.001).  These data 

indicated the capsule switching was probably from KL3 to KL2. To provide further contextualization of 

ST2 transmission, we compared our data with previously published ST2 genomes from other hospitals in 

south Vietnam. We found several occasions where ST2 isolates from different hospitals clustered together 

demonstrating between-hospital transmissions of these organisms. Additionally, capsule switching 

appeared to occur rather frequently during the circulation of this clone (Figure 2).   

For ST571 isolates, most isolates (10/13) belonged to a KL10 phylogenetic cluster, comprising of both 

ICU and non-ICU isolates. Within this cluster, there were two isolates from ICU and respiratory ward 

differing by only 1 SNP, suggesting occasional transmission of ST571 between the two treatment wards 

(Supplementary Figure 2). 

4. Discussion 
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Here, we identified several potential risk factors associated with in-hospital mortality in patients infected 

with A. baumannii, including those that had been previously described in Vietnam and other countries, 

such as advanced age [5], ICU stay [44], exposure to immunosuppressive therapy [45], use of mechanical 

ventilation and central venous catheterization [6,44,45], AB lower respiratory tract infections [4,6,44]. 

Furthermore, the prior use of antibiotics in our study population was very common, among which the use 

of linezolid or aminoglycosides was significantly higher in non-survivors. Despite this interesting 

observation, the results should be interpreted with caution given the small number of patients. 

Furthermore, aminoglycosides and linezolid were not included in empirical antibiotic regimens for A. 

baumannii in our setting, and their usage may have been associated with severe patients with multiple 

infections or patients who did not respond to existing/previous treatment therapy and thus were prone to 

develop poor outcome. We did not collect the information about other bacterial infections before the 

acquisition of A. baumannii, which may have resulted in the usage of aminoglycosides and linezolid.  

 

The global spread of CRAB has prompted the increased use of colistin either alone or in combination 

with other drugs (i.e. meropenem, sulbactam, fosfomycin) for treatment [46]. Our study suggests that 

colistin-based treatment is a predictor of deaths in hospital, which is similar to the finding from a previous 

study [47]. Although the attributable causes of mortality in colistin-treated patients were difficult to 

ascertain, the use of colistin should be judicious and the dosing regimens must be carefully selected and 

monitored given its association with nephrotoxicity and neurotoxicity. Alternatively, non-colistin 

antimicrobial therapies effective against CRAB, such as tigecycline [48] and sulbactam [46], may also be 

considered. Furthermore, new antimicrobial agents with activities against CRAB that have been either 

FDA-approved (cefiderocol) or under clinical development (new beta-lactam/beta-lactam inhibitors 

combinations: durlobactam+sulbactam, zidebactam+cefepime) may be essential to treat CRAB [49]. 

Having access to these new antibacterial drugs and evaluating their clinical performance will be essential 

to provide new treatment of CRAB infections in Vietnam.        
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We found an extremely high prevalence of carbapenem resistance in A. baumannii, mainly mediated by 

the acquisitions of blaOXA-23; however, blaNDM-1 was also detected. The presence of distinct combinations 

of beta-lactamase and carbapenemase genes (blaOXA-23/blaNDM-1) in CRAB may result in decreased 

susceptibility to the new beta-lactam/beta-lactam inhibitors combinations and thus in vitro testing of these 

new drugs against distinct CRAB genotypes is warranted to predict in vivo effectiveness. In addition to 

carbapenem resistance, the MDR prevalence was extremely high; our finding concurred with published 

data from Vietnam demonstrating an alarming rate of carbapenem plus MDR in A. baumannii 

[19,21,22,24,25]. We also found a small proportion of colistin resistant Acinetobacter isolates (6%). Our 

work highlights the imminent threat of untreatable AB infections in Vietnam and calls for further research 

to limit the spread of XDR organisms and evaluate in vitro activity of new antibiotics against CRAB.      

 

We found strong evidence of between-ward and between-hospital transmissions of CRAB ST2, probably 

mediated by sharing of medical equipment and/or patient transfers between wards and hospitals. Our 

study corroborates the findings from previous studies which have shown a dominance and potential 

country-wide expansion of ST2 in Vietnam [19,50] and Southeast Asia [17]. Regular capsular switch 

(including the KL3 to KL2 event) within ST2 population was also evident, which potentially result in 

immune escape or enhanced colonization and infections in susceptible hosts. Capsular polysaccharide 

plays an important role in virulence, AMR and environmental persistence of A. baumannii [51,52] and a 

previous study has also found that replacement of a capsular locus is a key determinant of population 

changes [19]. We hypothesize that capsular diversification is a key evolutionary factor shaping the 

population structure and dynamics of CRAB ST2.  

 

Our study has some limitations. The study was subjected to several disruptions due to the COVID-19 

pandemic; hence, the number of study participants was lower than expected. Our findings were restricted 

to a single healthcare center encompassing a limited number of patients, and results may not be applicable 

to other hospital settings in Vietnam. Most deaths occurred in ICU, where patients had prolonged stays 
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before developing AB infections and were exposed to various risk factors, and thus the contribution of 

CRAB infections to the development of mortality was difficult to determine.  

 

In conclusion, we found A. baumannii infections were most prevalent in ICU, but also found in non-ICU 

wards. Most infections were hospital-acquired; various potential risk factors associated with in-hospital 

mortality were characterized. The prevalence of carbapenem resistance and MDR in A. baumannii was 

extremely high, together with the emergence of colistin resistance. ST2, ST571 and ST16 were the top 

three dominant genotypes identified, carrying a diverse array of AMR genes conferring carbapenem 

resistance plus MDR phenotype. We found evidence of within- and between-hospital transmissions and 

clonal diversification via capsular switching of CRAB ST2. Strengthening hospital infection control 

measures and routine surveillance is key to limit the spread of these organisms and timely detect of the 

emergence of novel pan drug-resistant variants.   
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Figure and Table  

 
 

Figure 1. Phylogenetic structure of A. baumannii ST2 isolates from University Medical Center, 

Vietnam 

Maximum likelihood (ML) phylogeny of A. baumannii ST2 from University Medical Center in Ho Chi 

Minh City, Vietnam. The ML tree was rooted using Acinetobacter baumannii ST2 strain WM99c as an 

outgroup. The terminal nodes are colored according to capsular polysaccharide type (KL types) of ST2 

isolates. The scale bar shows the number of SNPs. The heat map shows the presence (blue and red color) 

or absence (grey color) of acquired antimicrobial resistance genes and virulence factors. 
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Figure 2. Phylogenetic structure of A. baumannii ST2 isolates from this study together with 

previously published ST2 genomes from Vietnam 

Maximum likelihood (ML) phylogeny of A. baumannii ST2 from this study together with previously 

published ST2 genomes from other hospitals in Vietnam. The ML tree is rooted using Acinetobacter 

baumannii ST2 strain WM99c as an outgroup. The terminal nodes are colored according to capsular 

polysaccharide type (KL types) of ST2 isolates. The scale bar shows the number of substitutions per site. 

Black stars indicate bootstrap support values ≥80% on internal nodes, with larger stars indicating higher 

bootstrap values. Red cross indicates clusters containing isolates from different hospitals.  
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Table 1: Demographic and clinical characteristics of A. baumannii infections stratified by in-hospital 

mortality 

 Non-survivors 

(N=47) 

Survivors 

(N=37) 

Total  

(N=84) 

p value 

Age    0.018 

Median years, (IQR) 83 (68.5-86) 67 (53.0-82.0) 73.5 (64-86)  

Gender, male 24 (51.1%) 22 (59.5%) 46 (54.8%) 0.443 

ICU admission prior to the event 34 (72.3%) 8 (21.6%) 42 (50.0%) < 0.001 

Length of stay    0.878 

Mean days ± SD 37.4 ± 35.1 28.7 ± 16.2 33.6 ± 28.6  

Median days (IQR) 25 (14.5-46.5) 26 (17.0-36.0) 25.5 (15.8-37.8)  

Underlying conditions 37 (78.7%) 31 (83.8%) 68 (81.0%) 0.728 

Source of AB isolation    0.009 

Lower respiratory tract  37 (8.7%) 17 (5.9%) 54 (64.3%) 0.002 

Blood 2 (4.3%) 2 (5.4%) 4 (4.8%) 0.999 

Pus/wound swab  6 (12.8%) 11 (29.7%) 17 (20.2%) 0.055 

Urine 2 (4.3%) 7 (18.9%) 9 (10.7%) 0.039 

Immunosuppressive therapy 35.00 (74.5%) 17 (45.9%) 52.00 (61.90%) 0.008 

Invasive procedures     

Mechanical ventilation 37 (78.7%) 14 (37.8%) 51 (60.7%) <0.001 

Central venous catheterization 19 (40.4%) 6 (16.2%) 25.0 (29.8%) 0.017 

Urinary catheterization 14.0 (29.8%) 13.0 (35.1%) 27.0 (32.1%) 0.602 

Others  25.0 (53.2%) 15.0 (40.5% 40.0 (47.6%) 0.249 

Antibiotic use before AB infection     

  Third generation cephalosporins  17 (36.2%) 8 (21.6%) 25 (29.8%) 0.148 

  Carbapenems  35 (74.5%) 24 (64.9%) 59 (70.2%) 0.339 

  Glycopeptides  24 (51.1%) 13 (35.1%) 37 (44.0%) 0.144 

  Fluoroquinolones  19 (40.4%) 16 (43.2%) 35 (41.7%) 0.795 

  Colistin  9 (19.1%) 3 (8.1%) 12 (14.3%) 0.213 

Linezolid  18 (38.3%) 5 (13.5%) 23 (27.4%) 0.014 

Aminoglycosides  9 (19.1%) 1 (2.7%) 10 (11.9%) 0.037 

  Macrolides  6 (12.8%) 1 (2.7%) 7 (8.3%) 0.128 

Penicillins with beta-lactamase inhibitors       10 (21.3%) 8 (21.6%) 18 (21.4%) 0.969 

Antibiotic use after AB infection     

  Third generation cephalosporins  6.0 (12.8%) 6.0 (16.2%) 12.0 (14.3%) 0.654 

  Carbapenems  37 (78.7%) 27 (73.0%) 64 (76.2%) 0.539 

  Glycopeptides  22 (46.8%) 15 (40.5%) 37 (44.0%) 0.566 

  Fluoroquinolones  17 (36.2%) 10 (27.0%) 27 (32.1%) 0.373 

  Linezolid  17 (36.2%) 10 (27.0%) 27 (32.1%) 0.373 

  Colistin  26 (55.3%) 9 (24.3%) 35 (41.7%) 0.004 

  Aminoglycosides  8 (17.0%) 2 (5.4%) 10 (11.9%) 0.174 

  Macrolides  6 (12.8%) 3 (8.1%) 9 (10.7%) 0.725 

Penicillins with beta-lactamase inhibitors    15.0 (31.9%) 14.0 (37.8%) 29.0 (34.5%) 0.647 

  Fosfomycin  1 (2.1%) 2 (5.4%) 3 (3.6%) 0.58 

CRAB 45 (95.7%) 31 (83.8%) 76 (90.5%) 0.130 

Sequence Types    0.034 

  ST2 32 (68.1%) 16 (45.7%) 48 (58.5%)  

  ST571 8 (17.0%) 5 (14.3%) 13 (15.9%)  

  Other STs 7 (14.9%) 14 (40%) 21 (25.6%)  

  Missing 0 2 2  
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Table 2: Univariate and multivariate logistic regression of risk factors associated with in-hospital 

mortality in AB patients 

 

Characteristics Univariate Multivariable 

 OR1 95% CI1 p-value OR1 95% CI1 p-value 

Age 1.03 1.01, 1.06 0.025 1.03 1.00, 1.06 0.105 

ICU admission 9.99 3.79, 28.7 <0.001 6.03 2.10, 18.4 0.001 

Sources of AB isolation       

   Lower respiratory tract  4.35 1.72, 11.7 0.002 2.75 0.89, 8.77 0.08 

   Urine 0.19 0.03, 0.85 0.047    

Immunosuppressive therapy 3.43 1.39, 8.84 0.009    

Invasive procedures       

Mechanical ventilation 6.08 2.38, 16.6 <0.001    

Central venous catheterization 3.51 1.28, 10.8 0.019    

Antibiotic use before AB infection       

Linezolid  3.97 1.39, 13.3 0.015    

Aminoglycosides  8.53 1.49, 161 0.047 8.41 0.97, 203 0.096 

Antibiotic use after AB infection       

   Colistin  3.85 1.54, 10.3 0.005    
1 OR = Odds Ratio, CI = Confidence Interval  

 

Supplementary Figure 1. Spatio-temporal presentation of genetically clusters within ST2 isolates  

Kernel density estimation of the spatial temporal distribution of KL clusters within A. baumannii ST2 

phylogeny. The height of the curve is chosen so that the area under the curve is one. Gaussian kernel and 

a bandwidth value of 15 are utilized to estimate the density. Each dot represents an isolate within each of 

the KL clusters and is colored according to patient’s location (ICU versus non-ICU wards).  

 

Supplementary Figure 2. Phylogenetic structure of A. baumannii ST571 isolates  

The ML tree is rooted using Acinetobacter baumannii ST2 strain WM99c as an outgroup. The terminal 

nodes are colored according to capsular polysaccharide type (KL types) of ST571 isolates. The scale bar 

shows the number of SNPs. The heat map shows the presence (blue and red color) or absence (grey color) 

of acquired antimicrobial resistance genes and virulence factors. 

 

Supplementary Table 1: Metadata associated with A. baumannii isolates in our study  

Supplementary Table 2: Metadata associated with previously published A. baumannii ST2 isolates 

from Hospital for Tropical Diseases (HTD) and Cho Ray hospital (CR) in HCMC, Vietnam 

 

Supplementary Table 3: Quality assessment of whole genome sequencing data 
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